English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us

This site supported by

Ukr. Bioorg. Acta 2020, Vol. 15, N1, 20-25.

5-Substituted N-(9H-purin-6-yl)-1,2-oxazole-3-carboxamides as xanthine oxidase inhibitors

Oksana V. Muzychka, Olexandr L. Kobzar, Oleg V. Shablykin, Volodymyr S. Brovarets, Andriy I. Vovk

V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1 Murmanska St., Kyiv, 02094, Ukraine.
e-mail: vovk@bpci.kiev.ua

Synthetic 6-substituted purine derivatives are known to exhibit diverse bioactivity. In this paper, a series of N-(9H-purin-6-yl)-1,2-oxazole-3-carboxamide derivatives were synthesized and evaluated in vitro against xanthine oxidase, an enzyme of purine catabolism. The introduction of aryl substituent at position 5 of the oxazole ring was found to increase the inhibition efficiency. Some of the inhibitors containing 5-substituted isoxazole and purine moieties were characterized by IC
50 values in the nanomolar range. According to the kinetic data, the most active N-(9H-purin-6-yl)-5-(5,6,7,8-tetrahydronaphthalen-2-yl)-1,2-oxazole-3-carboxamide demonstrated a competitive type of inhibition with respect to the enzyme-substrate. Molecular docking was carried out to elucidate the mechanism of enzyme-inhibitor complex formation. The data obtained indicate that xanthine oxidase may be one of the possible targets for the bioactive purine carboxamides.

N-(9H-purin-6-yl)-1,2-oxazole-3-carboxamides, synthesis, bioactivity, xanthine oxidase.

1. Legraverend, M.; Grierson, D. S. The Purines: Potent and Versatile Small Molecule Inhibitors and Modulators of Key Biological Targets. Bioorg. Med. Chem. 2006, 14, 3987-4006.
2. Noguchi-Yachide, T.; Sakai, T.; Hashimoto, Y.; Yamaguchi, T. Discovery and structure-activity relationship studies of N6-benzoyladenine derivatives as novel BRD4 inhibitors. Bioorg. Med. Chem. 2015, 23, 953-959.
3. Amemiya, S.; Yamaguchi, T.; Sakai, T.; Hashimoto, Y.; Noguchi-Yachide, T. Structure–Activity Relationship Study of N6-Benzoyladenine-Type BRD4 Inhibitors and Their Effects on Cell Differentiation and TNF-α Production. Chem. Pharm. Bull. (Tokyo) 2016, 64, 1378-1383.
4. Marton, Z.; Guillon, R.; Krimm, I.; Rahimova, R.; Egron, D.; Jordheim, L. P.; Aghajari, N.; Dumontet, C.; Perigaud, C.; Lionne, C.; Peyrottes, S.; Chaloin, L. Identification of Noncompetitive Inhibitors of Cytosolic 5-Nucleotidase II Using a Fragment-Based Approach. J. Med. Chem. 2015, 58, 9680-9696.

5. Tamta, H.; Thilagavathi, R.; Chakraborti, A. K.; Mukhopadhyay, A. K. 6-(N-benzoylamino)purine as a novel and potent inhibitor of xanthine oxidase: Inhibition mechanism and molecular modeling studies. J. Enzyme. Inhib. Med. Chem. 2005, 20, 317-324.
6. Brondino, C. D.; Romao, M. J.; Moura, I.; Moura, J. J. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr. Opin. Chem. Biol. 2006, 10, 109-114.
7. Nagamatsu, T.; Yamasaki, H.; Fujita, T.; Endo, K.; Machida, H. Novel xanthine oxidase inhibitor studies. Part 2. Synthesis and xanthine oxidase inhibitory activities of 2-substituted 6-alkyl-idenehydrazine- or 6-arylmethylidenehydrazino-7H-purines and 3- and/or 5-substituted 9H-1,2,4-triazolo[3,4-i] purines. J. Chem. Soc., Perkin Trans. 1 1999, 21, 3117-3125.
8. Hsieh, J.-F.; Wu, S.-H.; Yang, Y.-L.; Choong, K.-F.; Chen, S.-T. The screening and characterization of 6-aminopurine-based xanthine oxidase inhibitors. Bioorg. Med. Chem. 2007, 15, 3450-3456.
9. Pacher, P.; Nivorozhkin, A.; Szabo, C. Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century After the Discovery of Allopurinol. Pharmacol Rev. 2006, 58, 87-114.
10. Zhang, T.; Lv, Y.; Lei, Y.; Liu, D.; Feng, Y.; Zhao, J.; Chen, S.; Meng, F.; Wang, S. Design, synthesis and biological evaluation of 1-hydroxy-2-phenyl-4-pyridyl-1H-imidazole derivatives as xanthine oxidase inhibitors. Eur. J. Med. Chem. 2018, 146, 668-677.
11. Li, J.; Wu, F.; Liu, X.; Zou, Y.; Chen, H.; Li, Z.; Zhang, L. Synthesis and bioevaluation of 1-phenyl-pyrazole-4-carboxylic acid derivatives as potent xanthine oxidoreductase inhibitors. Eur. J. Med. Chem. 2017, 140, 20-30.
12. Wang, S.; Yan, J.; Wang, J.; Chen, J.; Zhang, T.; Zhao, Y.; Xue, M. Synthesis of some 5-phenylisoxazole-3-carboxylic acid derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem. 2010, 45, 2663-2670.
13. Guan, Q.; Cheng, Z.; Ma, X.; Wang, L.; Feng, D.; Cui, Y.; Bao, K.; Wu, L.; Zhang, W. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. Eur. J. Med. Chem. 2014, 85, 508-516.
14. Xu, X.; Deng, L.; Nie, L.; Chen, Y.; Liu, Y.; Xie, R.; Li, Z. Discovery of 2-phenylthiazole-4-carboxylic acid, a novel and potent scaffold as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 525-528.
15. Nishino, T.; Okamoto, K. J. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. Biol. Inorg. Chem. 2015, 20, 195-207.
16. Voelker, R. Another Warning for Febuxostat. JAMA 2019, 312, 1245-1245.
17. Zhu, J.; Mo, J.; Lin, H. Z.; Chen, Y.; Sun, H. P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem. 2018, 26, 3065-3075.
18. Sysak, A.; Obminska-Mrukowicz, B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem. 2017, 137, 292-309.
19. Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res. 2018, 27, 1309-1344.
20. Kallitsakis, M. G.; Carotti, A.; Catto, M.; Peperidou, A.; Hadjipavlou-Litina, D. J.; Litinas, K. E. Synthesis and Biological Evaluation of Novel Hybrid Molecules Containing Purine, Coumarin and Isoxazoline or Isoxazole Moieties. Open. Med. Chem. J. 2017, 11, 196-211.
21. Tourteau, A.; Andrzejak, V.; Body-Malapel, M.; Lemaire, L.; Lemoine, A.; Mansouri, R.; Djouina, M.; Renault, N.; El Bakali, J.; Desreumaux, P.; Muccioli, G. G.; Lambert, D. M.; Chavatte, P.; Rigo, B.; Leleu-Chavain, N.; Millet, R. 3-Carboxamido-5-aryl-isoxazoles as New CB2 Agonists for the Treatment of Colitis. Bioorg. Med. Chem. 2013, 21, 5383-5394.
22. Marvel, C. S.; Dreger, E. E. In Organic Syntheses Collect; Blatt, A. H., Ed.; Wiley: New York, NY, 1941; Vol. 1, p 238.
23. Andrzejak, V.; Millet, R.; El Bakali, J.; Guelzim, A.; Gluszok, S.; Chavatte, P.; Bonte, J. P.; Vaccher, C.; Lipka, E. Synthesis of 2,3 and 4,5-Dihydro-hydroxy-isoxazoles and Isoxazoles Under Different pH Conditions. Lett. Org. Chem. 2010, 7, 32-38.

24. Muzychka, O. V.; Kobzar, O. L.; Popova, A. V.; Frasinyuk, M. S.; Vovk, A. I. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase. Bioorg. Med. Chem. 2017, 25, 3606-3613.
25. Tanchuk, V. Yu.; Tanin, V. O.; Vovk A. I. Multithreaded version of AutoDock 4.2 suitable for massive virtual screening of potential biologically active compounds (enzyme inhibitors), Third International Conference "High Performance Computing" HPC-UA 2013, Kyiv, Ukraine, 2013, 399-401.
26. Pauff, J. M.; Cao, H.; Hille, R. J. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. Biol. Chem. 2009, 284, 8760-8767.
27. Cao, H.; Pauff, J. M.; Hille, R. Substrate Orientation and Catalytic Specificity in the Action of Xanthine Oxidase: The Sequential Hydroxylation of Hypoxanthine to Uric Acid. J. Biol. Chem. 2010, 285, 28044-28053.
28. Okamoto, K.; Matsumoto, K.; Hille, R.; Eger, B. T.; Pai, E. F.; Nishino, T. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7931-7936.
29. Arnold, L.; Pressova, M.; Saman, D.; Vogtherr, M.; Limmer, S. Preparation of 1'-C Deuterated Synthons for RNA Synthesis by H-Phosphonate Method Aiming at Two-Dimensional NMR Secondary Structure Studies. Collect. Czech. Chem. Commun. 1996, 61, 389-403.
30. Pauff, J. M.; Zhang, J.; Bell, C. E.; Hille, R. Substrate Orientation in Xanthine Oxidase: Crystal Structure of Enzyme in Reaction With 2-hydroxy-6-methylpurine. J. Biol. Chem. 2008, 283, 4818-4824.
31. Huber, R.; Hof, P.; Duarte, R. O.; Moura, J. J.; Moura, I.; Liu, M. Y.; LeGall, J.; Hille, R.; Archer, M.; Romao, M. J. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 8846-8851.
32. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 1-17.
33. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639-1662.

Full-text in PDF