English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us

This site supported by

Ukr. Bioorg. Acta 2020, Vol. 15, N1, 34-41.


Ńationic carboxamide derivatives of tricyclic heteroaromatic compounds: synthesis and preliminary evaluation of antiproliferative activity

Valentina G. Kostina, Inna V. Alexeeva, Nadia A. Lysenko, Valentina V. Negrutska, Igor Y. Dubey 

Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03680, Ukraine
tel.: +380-50-753-3660; e-mail: dubey@imbg.org.ua

This research was aimed at the synthesis and study of biological activity of the carboxamides of tricyclic heteroaromatic systems, acridone, phenazine and thioxanthone, containing the aliphatic and aromatic cationic substituents at amide fragment. These heterocyclic cores are DNA intercalating agents, whereas the introduction of cationic groups provides additional ionic interactions of the ligands with their biological targets, such as DNA and enzymatic complexes of the system of nucleic acids biosynthesis. A convenient way of the introduction of such groups is a modification of heterocyclic carboxamides. A small library of new cationic amide derivatives of acridone-4-, phenazine-1- and thioxanthone-4-carboxylic acids was obtained. They were synthesized in 37-81% yield by mild and selective quaternization of the nitrogen atoms at N,N-dimethylaminoalkyl (alkyl = ethyl, propyl) and pyridylmethyl fragments of the neutral N-functionalized carboxamides with methyl iodide. Tricyclic heteroaromatic cores were not affected. Convenient protocol for the synthesis of thioxanthone-4-carboxylic acid (TCA) based on the reaction of 2-mercaptobenzoic and 2-iodobenzoic acids followed by cyclization of the intermediate was developed (yield 79%). A series of new N-functionalized neutral amides of TCA, the precursors of corresponding cationic carboxamide, were also obtained via the reaction of acyl chloride with amines. Preliminary in vitro testing of four compounds as potential antitumor agents in U87MG tumor cell culture (human malignant glioma) demonstrated their significant antiproliferative activity at low micromolar concentrations, with growth inhibition values GI50 in the range 1.7-11 µM. These results suggest that cationic carboxamides of tricyclic heteroaromatic systems are promising scaffolds for the design of new antitumor drugs.

acridone; phenazine; thioxanthone; carboxamides; antitumor agents.

Full text: (PDF, in English)

1. Gensicka-Kowalewska, M.; Cholewinski, G.; Dzierzbicka, K. Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Adv. 2017, 7, 15776-15804.
2. Prasher, P.; Sharma, M. Medicinal chemistry of acridine and its analogues. Medchemcomm. 2018, 9, 1589-1618.
3. Buus, J.; Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 2004, 104, 1663-1686.
4. Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem. 2017, 25, 6149-6166.
5. Paiva, A. M.; Pinto, M. N.; Sousa, F. A century of thioxanthones: through synthesis and biological applications. Curr. Med. Chem. 2013, 20, 2438-2457.

6. Piestrzeniewicz, M. K.; Wilmanska, D.; Studzian, K.; Szemraj, J.; Czyz, M.; Denny, W. A.; Gniazdowski, M. Inhibition of RNA synthesis in vitro by acridines – relation between structure and activity. Z. Naturforsch., C, J. Biosci. 1998, 53, 359-368.
7. Rewcastle, G. W.; Atwell, G. J.; Chambers, D.; Baguley, B. C.; Denny, W. A. Potential antitumor agents. 46. Structure-activity relationships for acridine monosubstituted derivatives of the antitumor agent N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide. J. Med. Chem. 1986, 29, 472-477.
8. Atwell, G. J.; Rewcastle, G. W.; Baguley, B. C.; Denny, W. A. Potential antitumor agents. 50. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J. Med. Chem. 1987, 30, 664-669.
9. Wakelin, L. P. G.; Adams, A.; Denny, W. A. Kinetic studies of the binding of acridine carboxamide topoisomerase poisons to DNA: implications for mode of binding of ligands with uncharged chromophores. J. Med. Chem. 2002, 45, 894-901.
10. Goodell, J. R.; Madhok, A. A.; Hiasa, H.; Ferguson, D. M. Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg. Med. Chem. 2006, 14, 5467-5480.
11. Ferreira, R.; Avino, A.; Mazzini, S.; Eritja, R. Synthesis, DNA-binding and antiproliferative properties of acridine and 5-methylacridine derivatives. Molecules 2012, 17, 7067-7082.
12. Lafayette, E. A.; Vitalino de Almeida, S. M. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules 2013, 18, 15035-15050.

13. Janockova, J.; Plsikova, J.; Kova', J.; Jendzelovsky, R.; Mikes, J.; Kasparkova, J.; Brabec, V.; Hamulakova, S.; Fedorocko, P.; Kozurkova, M. Tacrine derivatives as dual topoisomerase I and II catalytic inhibitors. Bioorg. Chem., 2015, 59, 168-176.
14. Krokidis, M. G.; Molphy, Z.; Efthimiadou, E. K.; Kokoli, M.; Argyri, S.-M.; Dousi, I.; Masi, A.; Papadopoulos, K.; Kellett, A.; Chatgilialoglu, C. Assessment of DNA topoisomerase I unwinding activity, radical scavenging capacity, and inhibition of breast cancer cell viability of N-alkyl-acridones and N,N?-dialkyl-9,9?-biacridylidenes. Biomolecules 2019, 9, 177-191.
15. Nunhart, P.; Konko'ova, E.; Janovec, L.; Jendzelovsky, R.; Vargova, J.; Sevc, J.; Matejova, M.; Miltakova, B.; Fedorocko, P.; Kozurkova, M. Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity. Bioorg. Chem. 2020, 94, 103393.

16. Gamage, S. A.; Spicer, J. A.; Rewcastle, G. W.; Milton, J.; Sohal, S.; Dangerfield, W.; Mistry, P.; Vicker, N.; Charlton, P. A.; Denny, W. A. Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino- and pyrrolophenazine carboxamides as topoisomerase-targeted anticancer agents. J. Med. Chem. 2002, 45, 740-743.
17. Yang, P.; Yang, Q.; Qian, X.; Cui, J. Novel synthetic isoquinolino[5,4-ab]phenazines: Inhibition toward topoisomerase I, antitumor and DNA photo-cleaving activities. Bioorg. Med. Chem. 2005, 13, 5909-5914.
18. Gamage, S. A.; Rewcastle, G. W.; Baguley, B. C.; Charlton, P. A.; Denny, W. A. Phenazine-1-carboxamides: Structure–cytotoxicity relationships for 9-substituents and changes in the H-boding pattern of the cationic side chain. Bioorg. Med. Chem. 2006, 16, 1160-1168.
19. Zhuo, S.-T.; Li, C.-Y.; Hu, M.-H.; Chen, S.-B.; Yao, P.-F.; Huang, S.-L.; Ou, T.-M.; Tan, J.-H.; An, L.-K.; Li, D.; Gu, L.-Q.; Huang, Z.-S. Synthesis and biological evaluation of benzo[a]phenazine derivatives as a dual inhibitor of topoisomerase I and II. Org. Biomol. Chem. 2013, 11, 3989-4005.

20. Cuenca, F.; Moore, M. J. B.; Johnson, K.; Guyen, B.; De Cian, A.; Neidle, S. Design, synthesis and evaluation of 4,5-di-substituted acridone ligands with high G-quadruplex affinity and selectivity, together with low toxicity to normal cells. Bioorg. Med. Chem. Lett. 2009, 19, 5109-5113.
21. Sparapani, S.; Haider, S. M.; Doria, F.; Gunaratnam, M.; Neidle, S. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes. J. Am. Chem. Soc. 2010, 132, 12263-12272.
22. Ungvarsky, J.; Plsikova, J.; Janovec, L.; Koval, J.; Mikes, J.; Mikesova, L.; Harvanova, D.; Fedorocko, P.; Kristian, P.; Kasparkova, J.; Brabec, V.; Vojtickova, M.; Sabolova, D.; Stramova, Z.; Rosocha, J.; Imrich, J.; Kozurkova, M. Novel trisubstituted acridines as human telomeric quadruplex binding ligands. Bioorg. Chem. 2014, 57, 13-29.
23. Gao, C.; Zhang, W.; He, S.; Li, S.; Liu, F.; Jiang, Y.Synthesis and antiproliferative activity of 2,7-diamino l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as potent telomeric G-quadruplex DNA ligands. Bioorg. Chem. 2015, 60, 30-36.
24. Negrutska, V. V.; Saraieva, I. V.; Kostina, V. G.; Alexeeva, I. V.; Lysenko, N. A.; Dubey, I. Ya. Telomerase inhibition by new di- and trisubstituted acridine derivatives. Biopolym. Cell 2016, 32, 468-471. 
25. Si, M. K.; Pramanik, S. K.; Ganguly, B. Tuning the ring strain effect in acridine derivatives on binding affinity with G-quadruplex-DNA: A computational and experimental study. Int. J. Biol. Macromol. 2019, 124, 1177-1185.
26. Bischoff, G.; Hoffmann, S. DNA-binding of drugs used in medicinal therapies. Curr. Med. Chem. 2002, 9, 321-348.

27. Martinez, R.; Chacon-Garcia, L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem. 2005, 12, 127-151.
28. Pindur, U.; Jansen, M.; Lemster, T. Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr. Med. Chem. 2005, 12, 2805-2847.
29. Paul, A.; Bhattacharya, S. Chemistry and biology of DNA-binding small molecules. Curr. Sci. 2012, 102, 212-231.
30. Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 2016, 59, 5987-6011.

31. Spiegel, J.; Adhikari, S.; Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem. 2020, 2, 123-136.
32. Gatasheh, M.K.; Kannan, S.; Hemalatha, K.; Imrana, N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala Int. J. Mod. Sci. 2017, 3, 272-278.
33. Zozulya, V.; Blagoi, Yu.; Lober, G.; Voloshin, I.; Winter, S.; Makitruk, V.; Shalamay, A. Fluorescence and binding properties of phenazine derivatives in complexes with polynucleotides of various base composition and secondary structure. Biophys. Chem. 1997, 65, 55-63.
34. Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, R. Phenazines and cancer. Nat. Prod. Rep. 2012, 29, 487-501.
35. Atwell, G. J.; Cain, B. F.; Baguley, B. C.; Finlay, G. J.; Denny, W. A. Potential antitumor agents. Part 43. Synthesis and biological activity of dibasic 9-aminoacridine-4-carboxamides, a new class of antitumor agent. J. Med. Chem. 1984, 27, 1481-1486.
36. Stankiewicz-Drogon, A.; Palchykovska, L. G.; Kostina, V. G.; Alexeeva, I. V.; Shved, A. D.; Boguszewska-Chachulska, A. M. New acridone-4-carboxylic acid derivatives as potential inhibitors of Hepatitis C virus infection. Bioorg. Med. Chem. 2008, 16, 8846-8852.

37. Stankiewicz-Drogon, A.; Dorner, B.; Erker, T.; Boguszewska-Chachulska, A.M. Synthesis of new acridone derivatives, inhibitors of NS3 helicase, which efficiently and specifically inhibit subgenomic HCV replication. J. Med. Chem. 2010, 53, 3117-3126.
38. Kostina, V. G.; Alexeeva, I. V.; Lysenko, N. A.; Negrutska, V. V.; Dubey, I. Ya. Synthesis and biological evaluation of new derivatives of tricyclic heteroaromatic carboxamides as potential topoisomerase I inhibitors. Ukr. Bioorg. Acta. 2016, 14, 3-8.
39. Palchykovska, L. G.; Alexeeva, I. V.; Kostina, V. G.; Platonov, M. O.; Negrutska, V. V.; Deriabin, O. M.; Tarasov, O. A.; Shved, A. D. New amides of phenazine-1-carboxylic acid: antimicrobial activity and structure-activity relationship. Ukr. Biokhim. Zh. 2008, 80, 140-147 (in Ukr.).
40. De Logu, A.; Palchykovska, L. H.; Kostina, V. H.; Sanna, A.; Meleddu, R.; Chisu, L.; Alexeeva, I. V.; Shved, A. D. Novel N-aryl- and N-heteryl phenazine-1-carboxamides as potential agents for the treatment of infections sustained by drug-resistand and multidrug-resistand Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 2009, 33, 223-229.
41. US Patent No 5380749. Thioxanthenone antitumor agents / Miller,
T. C.; Collins, J. C.; Mattes, K. C.; Wentland, M. P.; Perni, R. B.; Corbett, T. H.; Guiles, J. W. Patent appl. No 8/216989 23.03.1994. Publ. 10.01.1995.

42. Palmeira, A.; Vasconcelos, M. H.; Paiva, A.; Fernandes, M. X.; Pinto, M.; Sousa, E. Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. Biochem. Pharmacol. 2012, 83, 57-68.
43. Lima, R. T.; Sousa, D.; Paiva, A. M.; Palmeira, A.; Barbosa, J.; Pedro, M.; Pinto, M. M.; Sousa, E.; Vasconcelos, M.H. Modulation of autophagy by a thioxanthone decreases the viability of melanoma cells. Molecules 2016, 21, 1343-1357.
44. Rewcastle, G. W.; Denny, W. A. The synthesis of substituted 9-oxoacridan-4-carboxylic acids. Part 2. The use of 2-iodoisophthalic acid in the Jourdan-Ullmann reaction. Synthesis 1985, 1985, 217-220.
45. Zhu, X.; Yang, J.; Zhao, G.; Luo, X.; Zhang, Q.; Mao, G.; Nie, J. Synthesis and characterization of highly efficient thioxanthone-based macrophotoinitiator. Sci. J. Mater. Sci. 2012, 2, 1-8.
46. Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987, 47, 936-942.

Full-text in PDF