English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us

This site supported by

Ukr. Bioorg. Acta 2020, Vol. 15, N1, 53-58.


Theoretical evaluation of electroanalitical determination of diazoline (mebhydrolin) on a polymer electrode

Volodymyr V. Tkach1,2, Marta V. Kushnir1, Yana G. Ivanushko1,3, Silvio C. de Oliveira2, Olga V. Luganska4, Petro I. Yagodynets1, Zholt O. Kormosh5

1 Yuriy Fedkovich Chernivtsi National University, 2 Kotsiubynsky St., Chernivtsi, 58012, Ukraine
tel.: +380-50-640-0359; e-mail: nightwatcher2401@gmail.com
2 Universidade Federal de Mato Grosso do Sul, Ave. Sen. Felinto. Muller, 1555, C/P. 549, 79074-460, Campo Grande, MS, Brazil
3 Bukovinian State Medical University, 9 Teatralna Sq., Chernivtsi, 58000, Ukraine
4 Zaporizhzhya National University, 66 Zhukovskogo St., Zaporizhzhya, 69600, Ukraine
5 Lesya Ukrainka Eastern European National University, 13 Volya Ave., Lutsk, 43025, Ukraine

Mebhydrolin, the active substance of diazoline, is a histamine H1-blocker that possesses the anti-allergic, anti-pruritic, antioxidative properties as well as weak sedative effect. It is used to treat diseases and pathological conditions. Its long-term and excessive use leads to different side effects and complications such as granulocytopenia, neutropenia, dyscrasia, and granulocytosis. That is why the development of effective methods for determining the concentration of this drug is vital. There are no reports to date available on the electrochemical determination of diazoline (mebhydrolin). Based on the structural characteristics of the molecule it can be concluded that it is an electroactive compound. Its oxidation can effectively occur on the conductive polymer layer. Moreover, the electrochemical behavior of the drug promises to be very interesting, as it is developed by a complicated mechanism. In this work, the electrochemical determination of a mebhydrolin concentration on the leading polymer was studied from a theoretical point of view. The polymerization and the reactions sequences was describe by a mathematical model, which was derived and analyzed using linear stability theory and bifurcation analysis. From the model analysis we concluded that: a). The polymer electrode promotes an electrooxidation of mebhydrolin and the system is electroanalytically effective. The relationship between the electrochemical parameter (the current) and the concentration of nitrite is described and it is linear in nature. Therefore, the analytical signal can be easily interpreted. b). The electroanalytical process occurs in the diffusion mode at low concentrations of the analyte and in the adsorption mode at high concentration. c). The oscillatory behavior of this system is possible. It is caused by the effects of the electrochemical stage on PES as well as also by surface instabilities.

chemically modified electrodes, mebhydrolin, conductive polymers, electrochemical sensors, steady stationary state.

Full text: (PDF, in English)

1. Wu, Â.; Wang, H. L.; Cee V. J., etal. Discovery of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amines as potent PIM inhibitors.Bioorg. Med. Chem. Lett. 2015, 15, 775-780.
2. Schoor, J. V. Antihistamines : a brief review : clinical. Prof. Nurs. Today 2012, 16, 16-21.
3. McKenna, K. E.; McMillan, J. C. Exacerbation of psoriasis, liver dysfunction and thrombocytopenia associated with mebhydrolin. Clin. Exp. Dermatol. 1993, 18, 131-132.
4. Waitzinger, J.; Lenders, H.; Pabst G., et al. Three explorative studies on the efficacy of the antihistamine mebhydroline (Omeril). Int. J. Clin. Pharm. Ther. 1995, 33, 373-383.
5. Croset, S. C. J. Drug repositioning and indication discovery using description logics. Ph.D. Thesis, Darwin College, University of Cambridge, 2004.
6. Mohrle, H.; Rohn, C.; Westle, G. Indole cleavage with mebhydroline by sodium periodate – Part 2. Mechanism of the dilactam formation. Die Pharmazie, An Int. J. Pharm. Sci. 2006, 61, 391-399 (in German).
7. Edoute, Y.; Nagler, A.; Brenner, B. Agranulocytosis Associated With Mebhydrolin Napadisylate (Incidal). Harefuah 1984, 106, 208-209 (in Hebrew).
8. Guzzetti, R.; Saggiorato, F. Studio dell’efficacia e tollerabilita della mebidrolina in confront a dimetindene maleate. Clin. Ter. 1986, 116, 109-114 (in Italian).
9. Hafeez, Z. H.; Antihistamines and Their Role in Dermatology. J. Pak. Med. Assoc. 1996, 46, 1-6.
10. Mebhydrolin napadisilate, CID=22529, In PubChem Database. National Center for Biotechnology Information. [Internet]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Diazoline#section=Depositor-Provided-PubMed-Citations (accessed on April 24, 2020).
11. Mebhydrolin. EC nimber: 208-364-4, In ECHA Database. [Internet]. Available from: https://euon.echa.europa.eu/lt/web/guest/registration-dossier/-/registered-dossier/22142/11 (accessed on April 24, 2020).
12. Young, C. A. R.; Forrest, P.; Deveridge, S. F.; Gates, R. B.; Vincent, P.C. Abstract: Mebhydrolin induced agranulocytosis. Aust. N. Z. J. Med. 1982, 12, 173-176.
13. Nerdy, N. Development and validation of ultraviolet spectrophotometric method for determination of mebhydrolin napadisylate in tablet preparations. Asian J. Pharm. Clin. Res. 2017, 10, 367-372.
14. Wulandari, L. Determination and validation of mebhydroline napadisylate in tablets by HPLC. Indo. J. Chem. 2008, 8, 377-379.
15. Wulandari, L.; Evaluation of re-used HPTLC plate for qualitative abd quantitative analysis. Indo. J. Chem. 2006, 6, 338-340.
16. Suhadi, R.; Linawati, Y.; Wulandari, E. T.; Viriginia, D. M.; Setiawan, C. H. The metabolic disorders and cardiovascular risk among lower socioeconomic subjects in Yogyakarta-Indonesia. Asian J. Pharm. Clin. Res. 2017, 10, 367-372.
17. Pearlstein, A. J.; Johnson, J. A. Global and Conditional Stability of the Steady and Periodic Solutions of the Franck-FitzHugh Model of Electrodissolution of Fe in H2SO4. J. Electrochem. Soc. 1991, 136, 1290-1299.
18. Rahman, S. U.; Ba-Shammakh, M. S. Thermal effects on the process of electropolymerization of pyrrole on mild steel. Synth. Met. 2004, 140, 207-223.
19. de Andrade, V. M. Confeccao de biossensores atraves da imobilizacao de biocomponentes por eletropolimerizacao de pirrol, M.S. Thesis, Universidade Federal de Mato Grosso do Sul, Porto Alegre, 2006 (In Portuguese).
20. Tosar Rovira, J. P. Estudio de la inmovilizacion de oligonucleotidos a eletrodos modificados de oro: polipirrol, ydeteccionelectroquimica de secuencias complementarias, M.S. Thesis, Universidad de la Republica, Montevideo, 2008 (In Spanish).
21. Das, I.; Goel, N.; Gupta, S. K.; Agrawal, N.R. Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants. J. Electroanal. Chem. 2012, 670, 1-10.
22. Singh, R. Prospects of Organic Conducting Polymer Modified Electrodes: Enzymosensors. Int. J. Electrochem. 2012, N. 502707.
23. Tkach, V.; Swamy, B. K.; Ojani, R. et. al. El Mecanismo de la Oxidacion de Omeprazol Sobre el Electrodo de Carbono Vitroso, Modificado por Polializarina, y Su Descripcion Matematica.
Orbital Elec. J. Chem. 2015, 7, 1-4 (In Spanish).
24. Tkach, V.; Swamy, B. K.; Ojani R. et. al. O comportamento de paracetamol durante a sua oxidacao eletrocatalitica sobre poli(azul da anilina) e a sua descricao matematica. Rev. Colomb. Cien. Quim. Farm. 2015, 44, 148-161 (In Portuguese).
25. Tkach, V.; Ojani, R.; Nechyporuk, V.; Yagodynets, P. The mathematical study of the electrochemical nitrite sensorbased on poly(p-aminoacetanilide). Rev. Fac. Ing. UCV. 2015,30, 181-188 (In Portuguese).

Full-text in PDF