English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us

This site supported by

Ukr. Bioorg. Acta 2020, Vol. 15, N2, 22-26.

Condition-based switching the multicomponent reactions of 5-amino-3-(methylthio)-1,2,4-triazole, aromatic aldehydes, and pyruvic acid

Yana I. Sakhno1, Maksym V. Mykhailenko1,2, Maksim A. Kolosov2, Elena H. Shvets2, Vladimir I. Musatov1, Natalia V. Chorna1, Sergey M. Desenko1 and Valentyn A. Chebanov1,2*

1 State Scientific Institution “Institute for Single Crystals” of the NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
tel.: +380-67-576-6227; e-mail: chebanov@isc.kh.ua
2 V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine

The multicomponent reactions of 5-amino-3-methylthio-1,2,4-triazole with aromatic aldehydes and pyruvic acid were studied using conventional thermal heating and ultrasonic activation at room temperature. Under conventional heating, dihydrotriazolopyrimidine derivatives were formed in both two- and three-component treatments. In the case of ultrasonic activation, the multicomponent reaction led to the formation of 7-hydroxytetrahydrotriazolopyrimidines.

5-Amino-3-(methylthio)-1,2,4-triazole, multicomponent reaction, ultrasonication, pyruvic acid, heterocyclization.

Full text: (PDF, in English)

1. Wang, H.; Lee, M.; Peng, Z.; Blazquez, B.; Lastochkin, E.; Kumarasiri, M.; Bouley, R.; Chang, M.; Mobashery, S. Synthesis and Evaluation of 1,2,4-Triazolo[1,5- a ]Pyrimidines as Antibacterial Agents against Enterococcus Faecium. J. Med. Chem. 2015, 58, 4194-4203.
2. Bahekar, S. S.; Shinde, D. B. Synthesis and Anti-Inflammatory Activity of Some [4,6-(4-Substituted Aryl)-2-Thioxo-1,2,3,4-Tetrahydro-Pyrimidin-5-Yl]-Acetic Acid Derivatives. Bioorg. Med. Chem. Lett. 2004, 14, 1733-1736.
3. Sondhi, S. M.; Jain, S.; Dinodia, M.; Shukla, R.; Raghubir, R. One Pot Synthesis of Pyrimidine and Bispyrimidine Derivatives and Their Evaluation for Anti-Inflammatory and Analgesic Activities. Bioorganic Med. Chem. 2007, 15, 3334-3344.
4. Gangjee, A.; Jain, H. D.; Phan, J.; Lin, X.; Song, X.; McGuire, J. J.; Kisliuk, R. L. Dual Inhibitors of Thymidylate Synthase and Dihydrofolate Reductase as Antitumor Agents: Design, Synthesis, and Biological Evaluation of Classical and Nonclassical Pyrrolo[2,3-d]Pyrimidine Antifolates 1. J. Med. Chem. 2006, 49, 1055-1065.
5. Feng, Y. Q.; Gu, S. X.; Chen, Y. S.; Gao, X. D.; Ren, Y. X.; Chen, J. C.; Lu, Y. Y.; Zhang, H.; Cao, S. Virtual Screening and Optimization of Novel MTOR Inhibitors for Radiosensitization of Hepatocellular Carcinoma. Drug Des. Devel. Ther. 2020, 14, 1779-1798.
6. Alam, O. Imran, M. Khan, S. A. Synthesis and Biological Activity of Some Pyrimidine Derivatives. Indian J. Heterocycl. Chem. 2005, 14, 293-297.
7. Kidwai, M.; Saxena, S.; Rastogi, S.; Venkataramanan, R. Pyrimidines as Anti-Infective Agents. Curr. Med. Chem. -Anti-Infective Agents 2003, 2, 269-286.
8. Buurman, E. T.; Blodgett, A. E.; Hull, K. G.; Carcanague, D. Pyridines and Pyrimidines Mediating Activity against an Efflux-Negative Strain of Candida Albicans through Putative Inhibition of Lanosterol Demethylase. Antimicrob. Agents Chemother. 2004, 48, 313-318.
9. Wang, T.; Yang, S.; Li, H.; Lu, A.; Wang, Z.; Yao, Y.; Wang, Q. Discovery, Structural Optimization, and Mode of Action of Essramycin Alkaloid and Its Derivatives as Anti-Tobacco Mosaic Virus and Anti-Phytopathogenic Fungus Agents; 2020; Vol. 68.
10 Chebanov, V. A.; Sakhno, Y. I.; Desenko, S. M.; Shishkina, S. V.; Musatov, V. I.; Shishkin, O. V.; Knyazeva, I. V. Three-Component Procedure for the Synthesis of 5-Aryl-5,8-Dihydroazolo[1,5- ?]Pyrimidine-7-Carboxylic Acids. Synthesis (Stuttg). 2005, 2597-2601.
11. Sakhno, Y. I.; Desenko, S. M.; Shishkina, S. V.; Shishkin, O. V.; Sysoyev, D. O.; Groth, U.; Oliver Kappe, C.; Chebanov, V. A. Multicomponent Cyclocondensation Reactions of Aminoazoles, Arylpyruvic Acids and Aldehydes with Controlled Chemoselectivity. Tetrahedron 2008, 64, 11041-11049.
12. Murlykina, M. V.; Sakhno, Y. I.; Desenko, S. M.; Shishkina, S. V.; Shishkin, O. V.; Sysoiev, D. O.; Kornet, M. N.; Schols, D.; Goeman, J. L.; Van Der Eycken, J.; Van Der Eycken, E. V.; Chebanov, V. A. Study of the Chemoselectivity of Multicomponent Heterocyclizations Involving 3-Amino-1,2,4-Triazole and Pyruvic Acids as Key Reagents, and Biological Activity of the Reaction Products. European J. Org. Chem. 2015, 2015, 4481-4492.
13. Sakhno, Y. I.; Desenko, S. M.; Shishkina, S. V.; Shishkin, O. V.; Musatov, V. I.; Chebanov, V. A. Unusual Direction of Cyclocondensation of 1-(4-Chlorophenyl)-3,5-Diamino-1, 2,4-Triazole, Pyruvic Acid, and Aldehydes. Synthesis (Stuttg). 2011, 1120-1124.
14. Akrami, S.; Karami, B.; Farahi, M. A New and Green Approach for Regiospecific Synthesis of Novel Chromeno-Triazolopyrimidin Using Tungstic Acid Immobilized MCM-41 as a Reusable Catalyst. J. Heterocycl. Chem. 2020, 57, 2446-2454.
15. Chen, Q.; Jiang, L.-L.; Chen, C.-N.; Yang, G.-F. The First Example of a Regioselective Biginelli-like Reaction Based on 3-Alkylthio-5-Amino-1,2,4-Triazole. J. Heterocycl. Chem. 2009, 46, 139-148.
16. Lipson, V. V.; Desenko, S. M.; Borodina, V. V.; Shirobokova, M. G.; Karnozhitskaya, T. M.; Musatov, V. I.; Kravchenko, S. V. 2-Methylthio-4,5,6,7-Tetrahydro-1,2,4-Triazolo[1,5-a]Pyrimidin-5- and -7-Ones. Chem. Heterocycl. Compd. 2005, 41, 216-220.
17. Muravyova, E. A.; Desenko, S. M.; Rudenko, R. V.; Shishkina, S. V.; Shishkin, O. V.; Sen’ko, Y. V.; Vashchenko, E. V.; Chebanov, V. A. Switchable Selectivity in Multicomponent Heterocyclizations of Acetoacetamides, Aldehydes, and 3-Amino-1,2,4-Triazoles/5-Aminopyrazoles. Tetrahedron 2011, 67, 9389-9400.
18. Karami, B.; Farahi, M.; Banaki, Z. A New Protocol for Catalyst-Free Regioselective Synthesis of 5,9-Dihydropyrimido[5,4-e][1,2,4] Triazolo[1,5-a]Pyrimidine-6,8(4 H,7 H)-Diones. Synlett 2015, 26, 741-744.
19. Lyapustin, D. N.; Ulomsky, E. N.; Zanakhov, T. O.; Rusinov, V. L. Three-Component Coupling of Aromatic Aldehydes, 1-Morpholino-2-Nitroalkenes, and 3-Aminoazoles via Boron Trifluoride Etherate Catalysis: Reaction Pathway and Features of the Formation of Intermediates. J. Org. Chem. 2019, 84, 15267–15275.
20. Stecher, E. D.; Ryder, H. F. Ionization Constants and Rates of Ester Hydrolysis in the Benzylidenepyruvic Acid Series. J. Am. Chem. Soc. 1952, 74, 4392-4395.

Full-text in PDF