English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us

This site supported by


Ukr. Bioorg. Acta 2020, Vol. 15, N2, 40-47.

Some pharmacological properties of 4-[3-(5-bromo-2-hydroxyphenyl)-5-phenyl-3,4-dihydropyrazol-2-yl]-5H-thiazol-2-one

Anna P. Kryshchyshyn-Dylevych

Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
Ĺ-mail: kryshchyshyn.a@gmail.com

A series of 3,5-diaryl-pyrazolyl-thiazolidones was designed and synthesized as potential biological active compounds. The study of anticancer activity of 4-[3-(5-bromo-2-hydroxyphenyl)-5-phenyl-3,4-dihydropyrazol-2-yl]-5H-thiazol-2-one 1 revealed its high antiproliferative properties against a panel of cancer cell lines with the lowest growth inhibition concentration (GI50) towards leukemic cell line SR (0.0351 µĚ) and ovarian cancer cell line OVCAR-3 (0.248 µĚ). It was also found that pyrazoline-thiazolidinone 1 inhibited growth of Trypanosomabruceibrucei by 98,8% at a concentration of 10 µg/mL. The in-depth cytotoxicity study of compound 1 on human hepatocellular carcinoma HepG2 cells and non-tumorigenic murine fibroblast Balb/c 3T3in MTT, NRU, TPC and LDH assays showed that normal cells were less sensitive to compound 1 than the cancer cells; its action had led to disintegration of the cell membrane, inhibition of mitochondrial, lysosomal activity and proliferation of cancer cells. The highest selectivity indices were detected in the LDH assay.

pyrazoline-thiazolidinone hybrids, antitumor activity, antitrypanosomal activity, cytotoxicity.

Full text: (PDF, in English)

1. Rana, A.; Alex, J. M.; Chauhan, M.; Joshi, G.; Kumar, R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res. 2015, 24, 903-920.
2. Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. Eur. J Med. Chem. 2015, 140, 542-594.
3. Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. Eur. J Med. Chem. 2016, 113, 145-166.
4. Zheng, W.; Degterev, A.; Hsu, E.; Yuan, J.; Yuan, C. Structure-activity relationship study of a novel necroptosis inhibitor, necrostatin-7. Bioorg. Med. Chem. Lett. 2008, 18, 4932-4935.
5. Isloor, A.M.; Sunil, D.; Shetty, P.; Malladi, S.; Pai, K.S.R.; Maliyakki, N. Synthesis, characterization, anticancer, and antioxidant activity of some new thiazolidin-4-ones in MCF-7 cells. Med. Chem. Res. 2013, 22, 758-767.
6. Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J Med. Chem. 2009, 44, 1396-1404.
7. Adjei, A. A.; Charron, M.; Rowinsky, E. K.; Svingen, P. A.; Miller, J.; Reid, J. M.; Sebolt-Leopold, J.;  Ames M. M.;  Kaufmann, S. H. Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II. Clin. Cancer Res. 1998, 4, 683-691.
8. Mascarenhas, J.; Hoffman, R. Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin. Cancer Res. 2012, 18, 3008-3014.
9. Kryshchyshyn, A.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Thiazolidinone-Related Heterocyclic Compounds as Potential Antitrypanosomal Agents. In Azoles-Synthesis, Properties, Applications and Perspectives. IntechOpen, 2020.
10. Kryshchyshyn-Dylevych, A. P.; Zelisko, N. I.; Grellier, P.; Lesyk, R. B. Preliminary evaluation of thiazolidinone- and pyrazoline-related heterocyclic derivatives as potential antimalarial agents. Biopolym. Cell. 2020, 36, 48-60.
11. Havrylyuk, D.; Zimenkovsky, B.; Karpenko, O.; Grellier, P.; Lesyk, R. Synthesis of pyrazoline–thiazolidinone hybrids with trypanocidal activity. Eur. J Med. Chem. 2014, 85, 245-254.
12. Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C. W.; Smee, D. F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J Med. Chem. 2013, 66, 228-237.
13. Kryshchyshyn, A.; Kaminskyy, D.; Karpenko, O.; Gzella, A.; Grellier, P.; Lesyk, R. Thiazolidinone/thiazole based hybrids – New class of antitrypanosomal agents. Eur. J Med. Chem. 2019, 174, 292-308.
14. Bolognesi, M. L.; Cavalli, A. Multitarget drug discovery and polypharmacology. Chem. Med. Chem. 201611, 1190-1192.
15. Boyd M. R.; Paull K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen, Drug Dev. Res. 1995, 34, 91-109.
16. Boyd M. R. in: Cancer Drug Discovery and Development, B.A Teicher (Ed.), Humana Press, 1997, pp. 23-43.
17. Shoemaker R. H. The NCI60 human tumour cell line anticancer drug screen, Nat. Rev. Cancer. 2006, 6, 813-823.
18. Badisa R. B.; Darling-Reed S. F.; Joseph P.; Cooperwood J. S.; Latinwo L. M.; Goodman C. B. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009, 29, 2993-2996.
19. Palaska, E.; Aytemir, M.; Uzbay, I. T.; Erol, D. Synthesis and antidepressant activities of some 3, 5-diphenyl-2-pyrazolines. Eur. J Med. Chem. 200136, 539-543.
20. NCI-60 Human Tumor Cell Lines Screen. DTP Developmental Therapeutics Program, NIH website [Internet]. Available from: https://dtp.cancer.gov/discovery_development/nci-60/default.htm (accessed on October 10, 2020).
21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods. 1983, 65, 55-63.
22. Borenfreund E., Puerner J. A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119-124.
23. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of dye binding. Anal. Biochem. 1976, 72, 248-254.
24. Korzeniewski C.; Calleawert D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods. 1983, 64, 313-320.
25. Radko L.; Stypula-Trebas S.; Posyniak A.; Zyro D.; Ochocki J. Silver(I) Complexes of the pharmaceutical agents metronidazole and 4-hydroxymethylpyridine: comparison of cytotoxic profile for potential clinical application. Molecules. 2019, 24, 1949.

Full-text in PDF