English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us




This site supported by
 

Ukr. Bioorg. Acta 2021, Vol. 16, N1, 3-9.

Aldol Addition-Cyclization Reaction Cascade on a Platform of Chiral Ni(II) Complex of Glycine Schiff Base

Yupiao Zou1, Zizhen Yin1, Haibo Mei1, Hiroyuki Konno2, Hiroki Moriwaki3,
Vadim A. Soloshonok
4,5* and Jianlin Han1*

1College of Chemical Engineering, Nanjing Forestry University, 159 Lonpan Road, Nanjing, 210037, China
e-mail: hanjl@njfu.edu.cn
2Department of Biochemical Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
3Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
4Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardiza?bal 3, 20018 San Sebastian, Spain
5IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

tel.: +34-94-301-5177; e-mail: vadym.soloshonok@ehu.es

ABSTRACT

Using platform of a new type of chiral Ni(II) complex of glycine Schiff base we designed addition-cyclization reaction cascade to explore aspects of kinetic/thermodynamic formation of the corresponding (S)(2S,3S)/(S)(2S,3R) diastereomers. It was found that the final lactone products reflect the thermodynamic stereocontrol due to much greater rates of the reversible aldol addition vs. subsequent cyclization step. The observed 4/1 (S)(2S,3S)/(S)(2S,3R) diastereoselectivity in the reactions of new type of (S)-Ni(II) complexes constitute an improvement over the previously reported 1.7/1 ratio.

KEYWORDS
asymmetric synthesis; aldol additions; tailor-made amino acids; Ni(II) complexes; Schiff bases; cascade/domino/tandem reaction.

Full text: (PDF, in English, Suppl)

REFERENCES

  1. For the definition of “tailor-made amino acids”, see: Soloshonok, V. A.; Cai, C.; Hruby, V. J.; Meervelt, L. V. Asymmetric synthesis of novel highly sterically constrained (2S,3S)-3-methyl-3-trifluoromethyl- and (2S,3S,4R)-3-trifluoromethyl-4-methylpyro-glutamic acids. Tetrahedron 1999, 55, 12045-12058.
  2. a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422-518; b) Zhu, W.; Wang, J.; Wang, S.;
    Gu, Z.; Acena, J.L.; Izawa, K.; Liu, H.; Soloshonok, V. A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluorine Chem. 2014, 167, 37-54; c) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D. M.; Santi, C.; Ruzziconi, R.; Soloshonok, V. A. Fluorine-containing drugs approved by the FDA in 2018. Chem. Eur. J. 2019, 25, 11797-11819; d) Liu, J.; Li, Z.; Mei, H.; Soloshonok, V. A.; Han, J. Detrifluoroacetylative in Situ Generated Cyclic Fluorinated Enolates for the Preparation of Compounds Featuring a C-F Stereogenic Center. ACS Omega 2019, 4, 19505-19512;
    e) Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem. Rev. 2018, 118, 3887-3964.
  3. a) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001-2011). Chem. Rev. 2014, 114, 2432-2506; b) Meanwell, N. A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822-5880; c) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. Data-Mining for Sulfur and Fluorine: An Evaluation of Pharma-ceuticals To Reveal Opportunities for Drug Design and Discovery. J. Med. Chem. 2014, 57, 2832-2842; d) Mei, H.; Han, J.; Klika, K. D.; Izawa, K.; Sato, T.; Meanwell, N. A.; Soloshonok, V. A. Applications of fluorine-containing amino acids for drug design. Eur. J. Med. Chem. 2020, 186, 111826.
  4. a) Soloshonok, V. A.; Izawa, K. (Eds.) Asymmetric Synthesis and Application of ?-Amino Acids. ACS Symposium Series 1009, Oxford University Press: Oxford, UK, 2009;
    b) Henninot, A.; Collins, J. C.; Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382-1414; c) Blaskovich, M. A. T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807-10836;
    d) Soloshonok, V. A.; Sorochinsky, A. E. Practical Methods for the Synthesis of Symmetrically ?,?-Disubstituted ?-Amino Acids. Synthesis 2010, 2319-2344.
  5. a) Ma, J. S. Unnatural amino acids in drug discovery. Chim. Oggi 2003, 21, 65-68;
    b) Hodgson, D. R. W.; Sanderson, J. M. The synthesis of peptides and proteins containing non-natural amino acids. Chem. Soc. Rev. 2004, 33, 422-430; c) Sato, T.; Izawa, K.; Acena, J. L.; Liu, H.; Soloshonok, V. A. Tailor-Made ?-Amino Acids in the Pharmaceutical Industry: Synthetic Approaches to (1R,2S)-1-Amino-2-vinylcyclopropane-1-carboxylic Acid (Vinyl-ACCA). Eur. J. Org. Chem. 2016, 2757-2774; d) Wang, S.; Wang, Y.; Wang, J.; Sato, T.; Izawa, K.; Soloshonok, V. A.; Liu, H. The Second-generation of Highly Potent Hepatitis C Virus (HCV) NS3/4A Protease Inhibitors: Evolutionary Design Based on Tailor-made Amino Acids, Synthesis and Major Features of Bio-activity. Curr. Pharm. Des. 2017, 23, 4493-4554.
  6. Reviews on amino acids, see: a) Sorochinsky, A. E.; Soloshonok, V. A. Asymmetric synthesis of fluorine-containing amines, amino alcohols, ?-and ?-amino acids mediated by chiral sulfinyl group. J. Fluorine Chem. 2010, 131, 127-139; b) Acena, J. L.; Sorochinsky, A. E.; Soloshonok, V. A. Recent advances in the asymmetric synthesis of ?-(trifluoromethyl)-containing ?-amino acids. Synthesis 2012, 44, 1591-1602; c) Turcheniuk, K. V.; Kukhar, V. P.; Roeschenthaler, G.-V.; Acena, J. L.; Soloshonok, V. A.; Sorochinsky, A. E. Recent advances in the synthesis of fluorinated aminophosphonates and aminophosphonic acids. RSC Adv. 2013, 3, 6693-6716; d) Kukhar, V. P.; Sorochinsky, A. E.; Soloshonok, V. A. Practical synthesis of fluorine-containing ?- and ?-amino acids: recipes from Kiev, Ukraine. Future Med. Chem. 2009, 1, 793-819; e) Soloshonok, V. A. Highly diastereoselective michael addition reactions between nucleophilic glycine equivalents and ?-substituted-?, ?-unsaturated carboxylic acid derivatives a general approach to the stereochemically defined and sterically ?-constrained ?-amino acids. Curr. Org. Chem. 2002, 6, 341-364; f) Mikami, K.; Fustero, S.; Sanchez-Rosello, M.; Acena, J. L.; Soloshonok, V. A.; Sorochinsky, A. E. Synthesis of fluorinated ?-amino acids. Synthesis 2011, 3045-3079; g) Soloshonok, V. A.; Ohkura, H.; Yasumoto, M. Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid: Part II. Enantioselective biomimetic transamination of 4,4,4-trifluoro-3-oxo-N-[(R)-1-phenylethyl]butanamide. J. Fluorine Chem. 2006, 127, 930-935;
    h) Han, J.; Sorochinsky, A. E.; Ono, T.; Soloshonok, V. A. Biomimetic transamination-a metal-free alternative to the reductive amination. Application for generalized preparation of fluorine-containing amines and amino acids. Curr. Org. Synth. 2011, 8, 281-294; i) Wzorek, A.; Sato, A.; Drabowicz, J.; Soloshonok, V. A.; Klika, K. D. Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of ?-amino acid esters. Amino Acids 2016, 48, 605-613;
    j) Han, J.; Romoff, T. T.; Moriwaki, H.; Konno, H.; Soloshonok, V. A. Development of Hamari ligands for practical asymmetric synthesis of tailor-made amino acids. ACS Omega 2019, 4, 18942-18947; k) Han, J.; Wzorek, A.; Kwiatkowska, M.; Soloshonok, V. A.; Klika, K. D. The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. Amino Acids 2019, 51, 865-889.
  7. For reviews, see: a) Sorochinsky, A. E.; Acena, J. L.; Moriwaki, H.; Sato, T.; Soloshonok, V. A. Asymmetric synthesis of ?-amino acids via homologation of Ni (II) complexes of glycine Schiff bases. Amino Acids 2013, 45, 691-718; b) Sorochinsky, A. E.; Acena, J. L.; Moriwaki, H.; Sato, T.; Soloshonok, V. A. Asymmetric synthesis of ?-amino acids via homologation of Ni (II) complexes of glycine Schiff bases. Part 2: Aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of ?-amino acids. Amino Acids 2013, 45, 1017-1033; c) Acena, J. L.; Sorochinsky, A. E.; Moriwaki, H.; Sato, T.; Soloshonok, V. A. Synthesis of fluorine-containing ?-amino acids in enantiomerically pure form via homologation of Ni (II) complexes of glycine and alanine Schiff bases. J. Fluorine Chem. 2013, 155, 21-38; d) Acena, J. L.; Sorochinsky, A. E.; Soloshonok, V. A. Asymmetric synthesis of ?-amino acids via homologation of Ni (II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids 2014, 46, 2047-2073; e) Wang, Y.; Song, X.; Wang, J.; Moriwaki, H.; Soloshonok, V. A.; Liu, H. Recent approaches for asymmetric synthesis of ?-amino acids via homologation of Ni (II) complexes. Amino Acids 2017, 49, 1487-1520; f) Mei, H.; Jean, M.; Albalat, M.; Vanthuyne, N.; Roussel, C.; Moriwaki, H.; Yin, Z.; Han, J.; Soloshonok, V. A. Effect of substituents on the configurational stability of the stereogenic nitrogen in metal (II) complexes of ?-amino acid Schiff bases. Chirality 2019, 31, 401-409.
  8. For recent paper, see: a) Bergagnini, M.; Fukushi, K.; Han, J.; Shibata, N.; Roussel, C.; Ellis, T. K.; Acena, J. L.; Soloshonok, V. A. NH-type of chiral Ni (II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications. Org. Biomol. Chem. 2014, 12, 1278-1291; b) Wang, S.; Zhou, S.; Wang, J.; Nian, Y.; Kawashima, A.; Moriwaki, H.; Acena, J. L.; Soloshonok, V. A.; Liu, H.Chemical dynamic thermodynamic resolution and S/R interconversion of unprotected unnatural tailor-made ?-amino acids. J. Org. Chem. 2015, 80, 9817-9830; c) Li, J.; Zhou, S.; Wang, J.; Kawashima, A.; Moriwaki, H.; Soloshonok, V. A.; Liu, H. Asymmetric Synthesis of Aromatic and Heteroaromatic ?-Amino Acids Using a Recyclable Axially Chiral Ligand. Eur. J. Org. Chem. 2016, 999-1006;
    d) Takeda, R.; Kawamura, A.; Kawashima, A.; Sato, T.; Moriwaki, H.; Izawa, K.; Abe, H.; Soloshonok, V. A. Second-order asymmetric transformation and its application for the practical synthesis of ?-amino acids. Org. Biomol. Chem. 2018, 16, 4968-4972.
  9. a) Soloshonok, V. A.; Ellis, T. K.; Ueki, H.; Ono, T. Resolution/deracemization of chiral
    ?-amino acids using resolving reagents with flexible stereogenic centers. J. Am. Chem. Soc. 2009, 131, 7208-7209; b) Takeda, R.; Kawamura, A.; Kawashima, A.; Sato, T.; Moriwaki, H.; Izawa, K.; Akaji, K.; Wang, S.; Liu, H.; Acena, J. L.; Soloshonok, V. A. Chemical dynamic kinetic resolution and S/R interconversion of unprotected ?-amino acids. Angew. Chem. Int. Ed. 2014, 53, 12214-12217; c) Sorochinsky, A. E.; Ueki, H.; Acena, J. L.; Ellis, T. K.; Moriwaki, H.; Soloshonok, V. A. Chemical approach for interconversion of (S)-and (R)-?-amino acids. Org. Biomol. Chem. 2013, 11, 4503-4507.
  10. Zhou, S.; Wang, J.; Chen, X.; Acena, J. L.; Soloshonok, V. A.; Liu, H. Chemical kinetic resolution of unprotected ?-substituted ?-amino acids using recyclable chiral ligands. Angew. Chem. Int. Ed. 2014, 53, 7883-7886.
  11. a) Taylor, S. M.; Yamada, T.; Ueki, H.; Soloshonok, V. A. Asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylenedimerization of chiral glycine equivalents with dichloromethane under operationally convenient conditions. Tet. Lett. 2004, 45, 9159-9162; b) Ellis, T. K.; Hochla, V. M.; Soloshonok, V. A. Efficient synthesis of
    2-aminoindane-2-carboxylic acid via dialkylation of nucleophilic glycine equivalent. J. Org. Chem. 2003, 68, 4973-4976; c) Wang, J.; Lin, D.; Zhou, S.; Soloshonok, V. A.; Liu, H. Asymmetric synthesis of sterically and electronically demanding linear ?-trifluoromethyl containing amino acids via alkylation of chiral equivalents of nucleophilic glycine and alanine. J. Org. Chem. 2011, 76, 684-687.
  12. a) Yamada, T.; Okada, T.; Sakaguchi, K.; Ohfune, Y.; Ueki, H.; Soloshonok, V. A. Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogues of thalidomide. Org. Lett. 2006, 8, 5625-5628; b) Yamada, T.; Sakaguchi, K.; Shinada, T.; Ohfune, Y.; Soloshonok, V. A. Efficient asymmetric synthesis of the functionalized pyroglutamate core unit common to oxazolomycin and neooxazolomycin using Michael reaction of nucleophilic glycine Schiff base with ?,?-disubstituted acrylate. Tetrahedron: Asymmetry 2008, 19, 2789-2795; c) Soloshonok, V. A.; Cai, C.; Hruby, V. J. (S)-or (R)-3-(E-Enoyl)-4-phenyl-1, 3-oxazo-lidin-2-ones: ideal Michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. Org. Lett. 2000, 2, 747-750.
  13. a) Kawamura, A.; Moriwaki, H.; Roschenthaler, G.-V.; Kawada, K.; Acena, J. L.; Soloshonok, V. A. Synthesis of (2S, 3S)-?-(trifluoromethyl)-?, ?-diamino acid by Mannich addition of glycine Schiff base Ni (II) complexes to N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine. J. Fluorine Chem. 2015, 171, 67-72; b) Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P.; Meervelt, L. V.; Mischenko, N. Highly diastereoselective aza-aldol reactions of a chiral Ni (II) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2,3-diamino acids. Tet. Lett. 1997, 38, 4671-4674.
  14. a) Jorres, M.; Acena, J. L.; Soloshonok, V. A.; Bolm, C. Asymmetric carbon-carbon bond formation under solventless conditions in ball mills. ChemCatChem 2015, 7, 1265-1269;
    b) Jorres, M.; Chen, X.; Acena, J. L.; Merkens, C.; Bolm, C.; Liu, H.; Soloshonok, V. A. Asymmetric synthesis of ?-amino acids under operationally convenient conditions. Adv. Synth. Catal. 2014, 356, 2203-2208.
  15. a) Kawashima, A.; Shu, S.; Takeda, R.; Kawamura, A.; Sato, T.; Moriwaki, H.; Wang, J.; Izawa, K.; Acena, J. L.; Soloshonok, V. A.; Liu, H. Advanced asymmetric synthesis of (1R, 2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni (II) complex of glycine Schiff base. Amino Acids 2016, 48, 973-986; b) Kawashima, A.; Xie, C.; Mei, H.; Takeda, R.; Kawamura, A.; Sato, T.; Moriwaki, H.; Izawa, K.; Han, J.; Acena, J. L.; Soloshonok, V. A. Asymmetric synthesis of (1R, 2S)-1-amino-2-vinylcyclopropanecarboxylic acid by sequential SN 2-SN 2' dialkylation of (R)-N-(benzyl) proline-derived glycine Schiff base Ni (II) complex. RSC Adv. 2015, 5, 1051-1058.
  16. Large-scale synthesis, see: a) Yin, Z.; Moriwaki, H.; Abe, H.; Miwa, T.; Han, J.; Soloshonok, V. A. Large-scale asymmetric synthesis of Fmoc-(S)-2-amino-6, 6, 6-trifluorohexanoic acid. ChemistryOpen 2019, 8, 701-704; b) Mei, H.; Yin, Z.; Miwa, T.; Moriwaki, H.; Abe, H.; Han, J.; Soloshonok, V. A. Convenient asymmetric synthesis of Fmoc-(S)-6,6,6-trifluoro-Norleucine. Symmetry 2019, 11, 578; c) Mei, H.; Hiramatsu, T.; Takeda, R.; Moriwaki, H.; Abe, H.; Han, J.; Soloshonok. V. A. Expedient asymmetric synthesis of (S)-2-Amino-4, 4, 4-trifluorobutanoic acid via alkylation of chiral nucleophilic glycine equivalent. Org. Process Res. Dev. 2019, 23, 629-634; d) Han, J.; Takeda, R.; Liu, X.; Konno, H.; Abe, H.; Hiramatsu, T.; Moriwaki, H.; Soloshonok, V. A. Preparative Method for asymmetric synthesis of (s)-2-amino-4, 4, 4-trifluorobutanoic acid. Molecules 2019, 24, 4521.
  17. a) Soloshonok, V. A.; Kukhar, V. P.; Galushko, S. V.; Svistunova, N. Y.; Avilov, D. V.; Kuzmina, N. A.; Raevski, N. I.; Struchkov, Y. T.; Pisarevsky, A. P.; Belokon, Y. N. General method for the synthesis of enantiomerically pure ?-hydroxy-?-amino acids, containing fluorine atoms in the side chains. Case of stereochemical distinction between methyl and trifluoromethyl groups. X-Ray crystal and molecular structure of the nickel (II) complex of (2S, 3S)-2 (trifluoromethyl) threonine. J. Chem. Soc. Perkin Trans 1 1993, 3143-3155;
    b) Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P. Highly diastereoselective asymmetric aldol reactions of chiral Ni (II)-complex of glycine with alkyl trifluoromethyl ketones. Tetrahedron: Asymmetry 1996, 7, 1547-1550; c) Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P. Asymmetric aldol reactions of trifluoromethyl ketones with a chiral Ni (II) complex of glycine: stereocontrolling effect of the trifluoromethyl group. Tetrahedron 1996, 52, 12433-12442.
  18. a) Li, T.; Zhou, S.; Wang, J.; Acena, J. L.; Soloshonok, V. A.; Liu, H. Asymmetric synthesis of ?-(1-oxoisoindolin-3-yl) glycine: Synthetic and mechanistic challenges. Chem. Commun. 2015, 51, 1624-1626; b) Li, T.; Zhou, S.; Wang, J.; Acena, J. L.; Soloshonok, V. A.; Liu, H. Asymmetric synthesis of (2 S, 3 S)-?-(1-oxoisoindolin-3-yl) glycines under low-basicity “kinetic” control. J. Org. Chem. 2015, 80, 11275-11280.
  19. Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P.; Tararov, V. I., et al. Asymmetric aldol reactions of chiral Ni (II)-complex of glycine with aliphatic aldehydes. Stereodivergent synthesis of syn-(2S)-and syn-(2R)-?-alkylserines. Tetrahedron: Asymmetry 1995, 6, 1741-1756.
  20. a) Nian, Y.; Wang, J.; Moriwaki, H.; Soloshonok, V. A.; Liu, H. Analysis of crystallographic structures of Ni (ii) complexes of ?-amino acid Schiff bases: elucidation of the substituent effect on stereochemical preferences. Dalton Trans. 2017, 46, 4191-4198; b) Romoff, T. T.; Palmer, A. B.; Mansour, N.; Creighton, C. J.; Miwa, T.; Ejima, Y.; Moriwaki, H.; Soloshonok, V. A. Scale-up synthesis of (R)-and (S)-N-(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl) pyrrolidine-2-carboxamide hydrochloride, a versatile reagent for the preparation of tailor-made ?-and ?-amino acids in an enantiomerically pure form. Org. Process Res. Dev. 2017, 21, 732-739.
  21. a) Takeda, R.; Abe, H.; Shibata, N.; Moriwaki, H.; Izawa, K.; Soloshonok, V. A. Asymmetric synthesis of ?-deuterated ?-amino acids. Org. Biomol. Chem. 2017, 15, 6978-6983; b) Yamamoto, J.; Kawashima, A.; Kawamura, A.; Abe, H.; Moriwaki, H.; Shibata, N.; Soloshonok, V. A. Operationally Convenient and Scalable Asymmetric Synthesis of (2S)-and (2R)-?-(Methyl) cysteine Derivatives through Alkylation of Chiral Alanine Schiff Base NiII Complexes. Eur. J. Org. Chem. 2017, 1931-1939.
  22. a) Nian, Y.; Wang, J.; Zhou, S.; Wang, S.; Moriwaki, H.; Kawashima, A.; Soloshonok, V. A.; Liu, H. Recyclable ligands for the non-enzymatic dynamic kinetic resolution of challenging ?-amino acids. Angew. Chem. Int. Ed. 2015, 54, 12918-12922; b) Nian, Y.; Wang, J.; Zhou, S.; Dai, W.; Wang, S.; Moriwaki, H.; Kawashima, A.; Soloshonok, V. A.; Liu, H. Purely chemical approach for preparation of D-?-amino acids via (S)-to-(R)-interconversion of unprotected tailor-made ?-amino acids. J. Org. Chem. 2016, 81, 3501-3508; c) Mei, H.; Han, J.; Takeda, R.; Sakamoto, T.; Miwa, T.; Minamitsuji, Y.; Moriwaki, H.; Abe, H.; Soloshonok, V. A. Practical method for preparation of (S)-2-Amino-5,5,5-trifluoropentanoic acid via dynamic kinetic resolution. ACS Omega 2019, 4, 11844-11851.

 

 

 

Home