English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us

This site supported by


Ukr. Bioorg. Acta 2021, Vol. 16, N2, 3-11.

DOI: https://doi.org/10.15407/bioorganica2021.02.003

Transformation of substituted 3-hydroxy-4-[(2E)-3-arylprop-2-enoyl]-1,5-dihydro-2H-pyrrol-2-ones by the action of I2/DMSO into derivatives 2-aryl-5,6-dihydropyrano[2,3-c]pyrrole-4,7-diones

Roman N. Vydzhak*, Svitlana Ya. Panchishin, Yaroslav O. Prostota, Volodymyr S. Brovarets

V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine,
1 Murmanska St., Kyiv, 02094, Ukraine

e-mail: rmvydzhak@gmail.com

The effective and simple synthetic preparative procedure for obtaining of various derivatives of 2-aryl-5,6-dihydropyrano[2,3-c]pyrrole-4,7-diones applying the I
2/DMSO oxidation of 3-hydroxy-4-[(2E)-3-arylprop-2-enoyl]-1,5-dihydro-2H-pyrrol-2-ones was developed. This protocol was found to be compatible with a wide range of substituents and gave the reliable synthetic pathway for the obtaining of target compounds with a wide range of substituents under mild conditions. All obtained substances can be easily isolated and purified by crystallization without application of more complex and labour intensive purification methods.

multicomponent cyclization, pyrano[2,3-c]pyrrole, I
2/DMSO oxidative cyclization.

Full text: (PDF, in English)


  1. Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010, 14, 347-361.
  2. Schreiber, S. L. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery. Science 2000, 287, 1964.
  3. Zhang, L.; Zheng, M.; Zhao, F.; Zhai, Y.; Liu, H. Rapid Generation of Privileged Substructure-Based Compound Libraries with Structural Diversity and Drug-Likeness. ACS Comb. Sci. 2014, 16, 184-191.
  4. Pelish, H. E.; Westwood, N. J.; Feng, Y.; Kirchhausen, T.; Shair, M. D. Use of Biomimetic Diversity-Oriented Synthesis to Discover Galanthamine-Like Molecules with Biological Properties beyond Those of the Natural Product. J. Am. Chem. Soc. 2001, 123, 6740-6741.
  5. Wetzel, S.; Wilk, W.; Chammaa, S.; Sperl, B.; Roth, A. G.; Yektaoglu, A.; Renner, S.; Berg, T.; Arenz, C.; Giannis, A.; Oprea, T. I.; Rauh, D.; Kaiser, M.; Waldmann, H. A Scaffold-Tree-Merging Strategy for Prospective Bioactivity Annotation of ?-Pyrones. Angew. Chem. Int. Ed. 2010, 49, 3666-3670.
  6. Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem. Rev. 2014, 114, 4960-4992.
  7. Reis, J.; Gaspar, A.; Milhazes, N.; Borges, F. Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. J. Med. Chem. 2017, 60, 7941-7957.
  8. Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem. 2014, 78, 340-374.
  9. Aslam, N.; White, J.; Zafar, A.; Jabeen, M.; Ghafoor, A.; Sajid, N.; Noreen, S.; Khan, M. 4H-Pyrano[2,3-c]pyrazoles: A review. Arkivoc 2018, 2018, 139-203.
  10. Gorlitzer, K.; Dehne, A.; Engler, E. Anellierte 2-Tetrazolyl-4-pyrone. Arch. Pharm. 1982, 315, 249-258.
  11. Unangst, P. C.; Brown, R. E.; Herzig, D. J. Synthesis and antiallergy activity of 4-oxopyrano[3,2-b]indoles. J. Med. Chem. 1980, 23, 1251-1255.
  12. Hiort, J.; Maksimenka, K.; Reichert, M.; Perovic-Ottstadt, S.; Lin, W. H.; Wray, V.; Steube, K.; Schaumann, K.; Weber, H.; Proksch, P.; Ebel, R.; Muller, W. E. G.; Bringmann, G. New Natural Products from the Sponge-Derived Fungus Aspergillus niger. J. Nat. Prod. 2004, 67, 1532-1543.
  13. Schlingmann, G.; Taniguchi, T.; He, H.; Bigelis, R.; Yang, H. Y.; Koehn, F. E.; Carter, G. T.; Berova, N. Reassessing the Structure of Pyranonigrin. J. Nat. Prod. 2007, 70, 1180-1187.
  14. Miyake, Y.; Mochizuki, M.; Ito, C.; Itoigawa, M.; Osawa, T. Antioxidative Pyranonigrins in Rice Mold Starters and Their Suppressive Effect on the Expression of Blood Adhesion Molecules. Biosci., Biotechnol. Biochem. 2008, 72, 1580-1585.
  15. Riko, R.; Nakamura, H.; Shindo, K. Studies on pyranonigrins–isolation of pyranonigrin E and biosynthetic studies on pyranonigrin A. J. Antibiot. 2014, 67, 179-181.
  16. Kishimoto, S.; Tsunematsu, Y.; Sato, M.; Watanabe, K. Elucidation of Biosynthetic Pathways of Natural Products. Chem. Rec. 2017, 17, 1095-1108.
  17. Rao, P.; Shukla, A.; Parmar, P.; Rawal, R. M.; Patel, B.; Saraf, M.; Goswami, D. Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophys. Chem. 2020, 264, 106425.
  18. Sarabu, R. 3-Oxo-3,9-dihydro-1H-chromeno[2,3-c]pyrroles as glucokinase activators., 2011, CA2801168A1.
  19. Sidhu, P. S.; Mosier, P. D.; Zhou, Q.; Desai, U. R. On scaffold hopping: Challenges in the discovery of sulfated small molecules as mimetics of glycosaminoglycans. Bioorg. Med.Chem. Lett. 2013, 23, 355-359.
  20. Mangiatordi, G. F.; Trisciuzzi, D.; Alberga, D.; Denora, N.; Iacobazzi, R. M.; Gadaleta, D.; Catto, M.; Nicolotti, O. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur. J. Med. Chem. 2017, 139, 792-803.
  21. Zhuang, C.; Miao, Z.; Wu, Y.; Guo, Z.; Li, J.; Yao, J.; Xing, C.; Sheng, C.; Zhang, W. Double-Edged Swords as Cancer Therapeutics: Novel, Orally Active, Small Molecules Simultaneously Inhibit p53–MDM2 Interaction and the NF-?B Pathway. J. Med.Chem. 2014, 57, 567-577.
  22. Josa-Cullere, L.; Towers, C.; Thompson, A. L.; Moloney, M. G. Chemoselective Formation and Reaction of Densely Functionalised Bicyclic Tetramic Acids and Their Biological Activity. Eur. J. Org. Chem. 2017, 2017, 7055-7059.
  23. Vydzhak, R. N.; Panchishin, S. Y. Synthesis of 2-phenyl-5,6-dihydropyrano[2,3-c]pyrrole-4,7-dione derivatives. Russ. J. Gen. Chem. 2008, 78, 1641-1642.
  24. Gein, V. L.; Konahina, L. O.; Andreichikov, Y. S. Five-Membered 2,3-Dioxoheterocycles XXX. Cyclization of 1,5-diaryl- and 1-methyl-5-phenyl-4-ethoxalaacetyltetrahydropyrrole-2,3-diones and their Arylamino derivatives. Zh. Org. Chim. 1992, 28, 2134-2140.
  25. Ryabukhin, S. V.; Panov, D. M.; Plaskon, A. S.; Grygorenko, O. O. Approach to the Library of 3-Hydroxy-1,5-dihydro-2H-pyrrol-2-ones through a Three-Component Condensation. ACS Comb. Sci. 2012, 14, 631-635.
  26. Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958-2975.
  27. Soliman, G.; Rateb, L. Synthesis of heterocyclic compounds from ?-unsaturated 1 : 3-diketo-esters. J. Chem.Soc. 1956, 3663-3668.