English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us




This site supported by
 


Ukr. Bioorg. Acta 2020, Vol. 15, N2, 42-45.

The theoretical description for the sucralose electrochemical determination, assisted by poly(safranine) modified electrode

Volodymyr V. Tkach1,2*, Nataliia M. Storoshchuk1, Silvio C. de Oliveira2, Yana G. Ivanushko3, Yevgeniya V. Nazymok3, Olga V. Luganska4, and Petro I. Yagodynbets1

1 Yuriy Fedkovich Chernivtsi National University, 2 Kotsiubynsky St., Chernivtsi, 58012, Ukraine
tel.: +380-50-640-0359; e-mail: nightwatcher2401@gmail.com
2 Universidade Federal de Mato Grosso do Sul, Ave. Sen. Felinto. Muller, 1555, C/P. 549, 79074-460, Campo Grande, MS, Brazil
3Bukovinian State Medical University, 9 Teatralna Sq., Chernivtsi, 58000, Ukraine
4 Zaporizhzhya National University, 66 Zhukovskogo St., Zaporizhzhya, 69600, Ukraine

ABSTRACT
For the first time, sucralose cathodic electrochemical determination, assisted by the saftanine-modified electrode has been theoretically described. The correspondent mathematical model analysis has shown that the steady-state stability range is wider than in the most system of electrochemical determination over the pyridinic nitrogen-containing conducting polymer. Moreover, the oscillatory behavior is less probable. Therefore, poly(safranine) is an efficient electrode modifier for sucralose electrochemical determination.

KEYWORDS
sucralose, conducting polymer, safranine, electrochemical sensors, stable steady-state.

Full text: (PDF, in English)

REFERENCES

  1. Torkzadeh-Mahani, A. Mohammadi, M. Torkzadeh-Mahani, M. Mohamadi, Anal. Bioanal. Electrochem., 9(2017), 117
  2. D. J. E. Costa, J.C. Santos, F. A. C. Sanches-Brandao et al., J. Electroanal. Chem., 789(2017), 100
  3. Sh. M. Azab, A.M. Fekry, RSC Adv., 7(2017), 1118
  4. Y. Shu, B. Li, Q. Xu et al., Sens. Act. B. Chem., 241(2017), 528
  5. https://pubchem.ncbi.nlm.nih.gov/compound/Sucralose#section=Top, acesso aos 29 de marco de 2017
  6. https://www.fda.gov/ohrms/dockets/98fr/040398a.pdf, acesso aos 29 de marco de 2017
  7. S. Schiffman, K. I. Rother, J. Toxicol. Environm. Health. B. Crit. Rev., 16(2013), 399
  8. http://foodconstrued.com/2015/07/sucralose, acesso aos 29 de marco de 2017
  9. Dr. Edward Group III, Health Begins in the Colon, GCHealth, Houston, Texas, 2007
  10. M.Y. Pepino, C.D. Tiedmann, B. W. Patterman et al., Diab. Care., 28(2014), 2530
  11. M.B. Abou-Donia, E.M. El-Masry, A.A. Abdel-Rahman et al., J. Toxicol. Envi. Health A., 71(2008), 1415
  12. L. Hou, X. Zhang, D. Wang, A. Baccarelli, Int. J. Epidemiol. 41(2012), 79
  13. Sh. Dong, G. Liu, J. Hu, M. Zheng, Sci. Rep., 3(2013), ID: 2946
  14. Rahn, V. A. Yaylayan, Food Chem., 118(2010), 56
  15. L.Y. Chen, Y.P. Liu, X.Q. Ran, C.J. Sun, Sichuan Da Xue Xue Bao Yi Xue Ban, 45(2014), 836, in Chinese
  16. W. Yan, N. Wang, P. Zhang et al., Food Chem., 204(2016), 358
  17. Y. Lee, B. Do, G. Lee et al., Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 17(2017), 1
  18. Ferrer, J.A. Zwiegenbaum, E. M. Thurman, Anal. Chem., 85(2013), 9581
  19. V.V. Tkach, S.C. de Oliveira, N.M. Storoshchuk et al., Appl. J. Env. Eng. Sci., 4(2018), 141
  20. V.V. Tkach, I.L. Kukovska, S. M. Lukanova et al., Anal. Bioanal. Electrochem., 10(2018), 587
  21. V. Tkach, N. Storoshchuk, B. Storoshchuk et al. Biointerface Res. Appl. Chem., 12(2022), 1499
  22. X. Liu, Int. J. Electrochem., 2011(2011), 986494
  23. L. Niu, K. Lian, W. Kang, Sh. Li, J. Braz. Chem. Soc., 22(2011), 203
  24. X. Liu, Bull. Kor. Chem. Soc., 31(2010), 1182
  25. D. Saritha, V.K. Gupta, A.V.B. Reddy et al., Int. J. Electrochem. Soc., 14(2019), 10093
  26. K.Aoki, I. Mukoyama, J.Chen, Russ. J. Electrochem, 40(2004), 319 
  27. T. McQuade, A. Pullen, T.M. Swager, Chem. Rev., 100(2000), 2537
  28. I.Das, N.R.Agrawal, S.A.Ansari, S.K.Gupta,Ind. J. Chem,  47(2008), 1798
Full-text in PDF  

 

Home