English version Ukrainian version
Last issue Archive Editorial board Instructions to authors Contact us




This site supported by
 


Ukr. Bioorg. Acta 2020, Vol. 15, N2, 13-21.

Synthesis and anticancer activity of 5-sulfonyl derivatives of
1,3-oxazole-4-carboxylates

Stepan G. Pilyo, Îlexandr P. Kozachenko, Victor V. Zhirnov, Maryna V. Kachaeva, Oleksandr L. Kobzar, Andriy I. Vovk and Volodymyr S. Brovarets*

V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1 Murmanska St., Kyiv, 02094, Ukraine
e-mail: brovarets@bpci.kiev.ua

ABSTRACT
A series of new 2-aryl 5-sulfonyl-1,3-oxazole-4-carboxylates were synthesized for NCI anticancer screening protocol against 60 cancer cell lines. Screening was performed in vitro on 60 cell lines of lungs, kidneys, CNS, ovaries, prostate, and breast cancer, leukemia, and melanoma. Methyl 5-benzylsulfonyl-2-phenyl-1,3-oxazole-4-carboxylate 16 exhibited potent and broad range of cytotoxic activity against tested human cancer cells with average GI50, TGI, and LC50 5.37·10-6, 1.29·10-5 and 3.6·10-5 mol/L respectively. Molecular docking was used to evaluate possible interaction of compound 16 with tubulin as well as complex formation with CDK2.

KEYWORDS
5-sulfonyl-1,3-oxazole-4-carboxylates; synthesis; anticancer activity; selectivity; molecular docking.

Full text: (PDF, in English)

REFERENCES
1. Slobodyanyuk, E. Y.; Andriienko, A. A.; Vashchenko, B. V.; Grygorenko, O. O.; Volochnyuk, D. M.; Ryabukhin, S. V. Expanding the chemical space of sp3-enriched 4,5-disubstituted oxazoles via synthesis of novel building blocks. Chem. Heterocycl. Compd. 2019, 55, 421-434.
2. Serebryannikova, A. V.; Galenko, E. E.; Novikov, M. S.; Khlebnikov, A. F. Synthesis of Isoxazole- and Oxazole-4-carboxylic Acids Derivatives by Controlled Isoxazole-Azirine-Isoxazole/Oxazole Isomerization. J. Org. Chem. 2019, 84, 15567-15577.
3. Ghani, A.; Hussain, E. A.; Sadiq, Z.; Naz, N. Advanced synthetic and pharmacological aspects of 1,3-oxazoles and benzoxazoles. Indian J. Chem. 2016, 55B, 833-853.
4. Kachaeva, M. V.; Pilyo, S. G.; Zhirnov, V. V.; Brovarets, V. S. Synthesis, characterization, and in vitro anticancer evaluation of 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. Med. Chem. Res. 2019, 28, 71-80.
5. Kachaeva, M. V.; Hodyna, D. M.; Semenyuta, I. V.; Pilyo, S. G.; Prokopenko, V. M.; Kovalishyn, V. V.; Metelytsia, L. O.; Brovarets, V. S.Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem. 2018, 74, 294-303.
6. Kachaeva, M. V.; Pilyo, S. G.; Demydchuk, B. A.; Prokopenko, V. M.; Zhirnov, V. V.; Brovarets, V. S. 4-Cyano-1, 3-oxazole-5-sulfonamides as novel promising anticancer lead compounds. Int. J. Curr. Res. 2018, 10, 69410-69425.
7. Kupke, F.; Herz, C.; Hanschen, F.; Platz, S.; Odongo, G. A.; Helmig, S.; Bartolome, M. M. R.; Schreiner, M.; Rohn, S.; Lamy, E. Cytotoxic and genotoxic potential of food-borne nitriles in a liver in vitro model. Sci. Rep. 2016, 6, 37631.
8. Drach, B. S.; Mis'kevich, G. N. Reaction of azlactone ?-benzamido-?, ?-dichloroacrylic acid with amines and alcohols. Russ. J. Org. Chem. 1974, 10, 2315-2319 (in Russian). Chem. Abstr. 1974, 82, 72843t.
9. Kornienko, A. N.; Pil’o, S. G.; Prokopenko, V. M.; Brovarets, V. S. Synthesis of methyl 2-aryl-5-chlorosulfonyl-1,3-oxazole-4-carboxylates and their reactions with amines and amidines. Rus. J. Gen. Chem., 2014, 84, 1555-1560.
10. Pil’o, S. G.; Prokopenko, V. M.; Brovarets, V. S; Drach, B. S. 2-aryl-5-arylsulfanyl-1,3-oxazole-4-carboxylic acids and their derivatives. Rus. J. Gen. Chem., 2010, 80, 1345-1350.
11. Alley, M. C.; Scudiero, D. S.; Monks, P. A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48, 589-601.
12. Grever, M. R.; Schepartz, S. A.; Chabner, B. A. The National Cancer Institute: cancer drug discovery and development program. Semin. Oncol. 1992, 19, 622-638.
13. Boyd, M. R.; Paull, K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995, 34, 91-109.
14. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer. 2006, 6, 813-823.
15. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paul, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757-776.
16. Lethu, S.; Bosc, D.; Mouray, E.; Grellier, P.; Dubois, J. New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversification of the aryl moiety by solid-phase synthesis. J. Enzyme Inhib. Med. Chem. 2013, 28, 163-171.
17. Lu, Yan, et al. "An overview of tubulin inhibitors that interact with the colchicine binding site." Pharmaceutical research 29.11 (2012): 2943-2971.
18. Shapiro, Geoffrey I. "Cyclin-dependent kinase pathways as targets for cancer treatment." J Clin Oncol 24.11 (2006): 1770-1783.
19. Ravelli, Raimond BG, et al. "Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain." Nature 428.6979 (2004): 198-202.
20. Brown, Nicholas R., et al. "CDK1 structures reveal conserved and unique features of the essential cell cycle CDK." Nature communications 6.1 (2015): 1-12.
21. Lolli, Graziano, et al. "The crystal structure of human CDK7 and its protein recognition properties." Structure 12.11 (2004): 2067-2079.
22. Hole, Alison J., et al. "Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity." Journal of medicinal chemistry 56.3 (2013): 660-670.
23. NCI-60 Human Tumor Cell Lines Screen. DTP Developmental Therapeutics Program, NIH website [Internet]. Available from: https://dtp.cancer.gov/discovery_development/nci-60/default.htm (accessed on October 14, 2020).
24. Trott O.; Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2011. 31. 455-461.
25. Berman H. M.; Westbrook J.; Feng Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000. 28. 235-242.
26. MarvinSketch 5.2.4, 2009, ChemAxon (http://www.chemaxon.com).
27. Stewart J. J. P. MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net.
28. Sanner, M. F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999. 17. 57–61.

Full-text in PDF  

 

Home